全球Web3生态创新观察报告(之二)

全球Web3生态创新观察报告(之二)
文章摘要:零知识汇总ZKRollup于2018年首次被提出,它依靠零知识密码学来保障资金安全(既能充分证明自己是某种权益的合法拥有者,又不把有关的信息泄露出去,即给外界的「知识」为

3.1 ZK Rollup

零知识汇总 ZK Rollup 于 2018 年首次被提出,它依靠零知识密码学来保障资金安全(既能充分证明自己是某种权益的合法拥有者,又不把有关的信息泄露出去,即给外界的「知识」为「零」),并将以太坊主链作为存储媒介和最终状态的确认,所以也继承了主链的安全属性。

ZK Rollup 方案下可保护用户的资金免遭没收和审查,但 ZK Rollup 的技术不成熟性和构建通用性网络难度大,也让 ZK Rollup 方案的应用受到了很大的限制。对于 ZKRollup 的采用者来说,创建一个通用的 EVM 执行环境难度要比 Optimistic Rollup 高很多,ZK Rollup 的典型代表项目就是 zkSync 和 StarkNet。

zkSync

zkSync 由 Matter Labs 团队开发,完全兼容 EVM 的通用 2.0 测试网已经上线,在 zkSync 2.0 中,L2 状态分为具有链上数据可用性的 zkRollup 和具有链下数据可用性的 zkPorter,类似 StarkWare 旗下的 StarkNet 和 StarkEx。官方公布的链上生态项目已有近 100 余个,集中在基础设施、跨链桥和 DeFi 领域,在 zkSync 网络中,支付 gas 中可以用其他 Token 代替,无需一定要使用 ETH。

StarkNet

StarkNet 是由 StarkWare 主导研发的 Layer 2 扩容通用平台,虽然与 zkSync 同属于 ZK Rollup 一族,但方案上有些许不同,前者使用 zk-SNARKs,所需的链上存储空间和 gas 费相对要小,后者采用的是 zk-STARKs,在网络安全性上更胜一筹。

5 月 StarkNet 以 80 亿美元估值完成 1 亿美元融资,成为了目前所有 Layer 2 项目估值最高的一个,目前,StarkWare 正在积极测试官网 L1-L2 桥 starkgate,预计在不久之后 StarkNet 网络会正式开放,StarkNet 官网上展示的生态项目有 70 余个,主要集中在 DeFi 领域。

3.2 Optimitic Rollup

Optimistic Rollup 所采用的不是零知识证明,而是欺诈证明,它借鉴了早期的 Plasma 扩容技术,依靠验证节点和挑战者间的博弈来保障资金安全,所以,当验证节点把 L2 上的交易数据最终状态返回至主链时,会进入一个 7 天左右的挑战期,挑战期内资金会被锁定,如果被验证交易数据有问题,其他的验证节点可提交欺诈证明,并将获得原验证节点的质押金。

相比 ZK Rollup,Optimistic Rollup 很显著的一个优点就是可以兼容比较复杂的智能合约,这也造就了目前已上线并形成应用规模的 Layer 2 项目都属于 Optimistic Rollup 的版图,比如:

Optimism

Optimism 是第一个开发 EVM 兼容的 Optimistic Rollup 解决方案,它通过单轮交互型欺诈证明保证同步到 Layer 1 的数据是有效的,这是它与 Arbitrum 方案的主要区别,同时 Optimism 也是四大主流 Layer 2 中首个发行 Token 的项目。

Arbitrum

Arbitrum 由 OffChainLabs 团队开发,诞生于普林斯顿大学,目前是所有 Layer 2 项目中生态发展最为完备,TVL 最高的项目。Arbitrum 采用的多轮交互欺诈证明,即在验证者提交欺诈证明后,Arbitrum 会首先在二层通过多轮交互,缩小争议范围后才会上主链进行模拟,来减少了链上解决争议的成本,这是它与 Optimism 方案主要的区别。

3.3 Validium 与 Plasma

Validium (StarkEx)

Validium 是由零知识证明研发机构 StarkWare 主导研发的混合扩容方式,它与 ZKRollup 的方案很类似,很关键的一点不同是 Validium 的交易数据并没有像 ZK Rollup 每笔数据都会存在主链上,虽然在链上发布了有效性证明,但数据储存是在链外,安全性不如 ZK Rollup 方案,比如 StarkEx Validium 的运营者是可以冻结用户的资金的。

此外,它对通用计算和智能合约的支持有限,生成零知识证明需要很高的计算能力对于低吞吐量的应用程序来说不具成本效益。而它的优势主要体现在没有提款延迟、有非常高的吞吐量(TPS 约为 1 万),应用这一方案的代表性项目有:Immutable,DeversiFi。

Plasma

2017 年 Plasma 曾是以太坊扩容方案领域的主流,属于早期的扩容技术,目前,伴随 Rollup 方案的成熟,Plasma 作为一个安全性不太高 Layer 2 方案逐渐走出了人们的视野。

Plasma 方案中,借鉴了过去比特币闪电网络的技术,它有一条独立的区块链,锚定以太坊主链,并使用欺诈证明来仲裁争议。它的优点是高吞吐量,每笔交易成本较低,缺点也很明显,难以支持通用计算,只支持特定逻辑的基本通证转账、兑换和等几种交易类型,此外,它还需要定期监视或者委托其他人监视网络,来确保资金安全。最具代表性的 Plasma 扩容方案就是 OMG Network。

纵观上述的 Layer 2 方案,我们能发现,Layer 2 扩容本质还是在安全、性能和去中心三个角度上的不同取舍,并由此衍生不同的方案。

第 4 节 Avalanche:雪崩协议、EVM、子网

Avalanche 主打高性能和高拓展性,前者通过雪崩协议本身的设计实现,后者通过支持开发者部署可自定义的子网实现。同时 Avalanche 对 EVM 有高兼容性,以吸引以太坊生态成熟的协议进驻,方便开发者建立 Avalanche 的原生协议。

4.1 雪崩协议

根据 Team Rocket(2018)的研究,雪崩协议的共识过程正如其名,雪崩一开始是随机崩塌(随机样本结果统计),最后大面积崩塌(即共识形成)。它的核心理念是通过不断反复对网络中的节点进行抽样并收集它们对某个提议的响应,最后可以把所有的诚实节点导向到同一个共识结果。

雪崩协议的优点有:高性能、低延迟、抗拜占庭攻击、抗双花攻击、矿工利益和用户利益不交叉、相对公平。

可能存在的问题有:

随机抽样达到的是非确定性共识。

冲突交易不受保护。

需要大量参与者的支持。

(详见:ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV)

4.2 Avalanche 的设计与原生跨链桥

资料来源:Avalanche 官网

Avalanche 主网由三条链组成:

1. 负责创建资产及交易的 X 链(Exchange Chain);

2. 负责储存链上数据,协调节点,建立子网的 P 链(

Platform Chain);

3. 负责执行智能合约,支持 EVM 的 C 链(Contract Chain)。

原生跨链桥 Avalanche Bridge 支持以太坊生态的资产跨链至 Avalanche 上,近期加入对 BTC 的原生跨链支持,以供 BTC 资产在 Avalanche DeFi 生态中使用。

4.3 生态

Avalanche 对以太坊生态极高的兼容度和基金会对生态的持续激励,吸引了大量以太坊原生的项目进驻,以及诞生了许多 Avalanche 原生的协议生态。用户仅需使用小狐狸钱包(MetaMask)添加 Avalanche-C 链即可参与 Avalanche 的生态。

Avalanche 上目前有 28 亿美元的 TVL,排名前五的 DAPP 分别是:

Aave(以太坊原生,跨链部署至 Avalanche 的借贷协议)

Trader Joe(Avalanche 原生的 DEX)

Wonderland(Avalanche 原生的 DeFi 2.0 协议,即 OlympusDAO fork)

Benqi(Avalanche 原生的借贷协议)

Platypus Finance(Avalanche 原生的稳定币兑换)

其他有特色的原生协议例如:

Avalaunch(Avalanche 上最大的 Launchpad)

Crabada(Avalanche 上曾经最活跃的 GameFi 协议)

Yeti Finance(Avalanche 上的借贷协议,支持杠杆)

Yield Yak(Avalanche 上的收益聚合器)

Step.app(Avalanche 上的 M2E 项目)

Ascenders(Avalanche 上的 RPG 类型 GameFi 项目)

4.4 子网(Subnet)

Avalanche 支持开发者将 DAPP 部署至 Avalanche 子网,以建立自己的多链应用链网络。子网部署简便,EVM 兼容,安全性使用的是 Avalanche 的「验证人池指定子集」,部分共享安全;子网之间目前无法直接通信,更适合可组合性不高,自成体系的 DAPP 协议。首个部署 Avalanche 子网的项目为 DeFi Kingdom。后续还有 Crabada,Step.app,Ascenders 等项目计划采用 Avalanche 子网。

第 5 节 BNB Chain:Binance、EVM、BAS

BNB 链与当前世界最大的中心化交易平台 Binance 关系紧密,采用 EVM 兼容架构,并开发 BAS 侧链。

5.1 架构

来源:Binance Blog

BNB 信标链:负责 BNB 链的治理(质押、投票)

BNB 智能链(BSC):兼容 EVM,共识层,连接多链的中心

BNB 侧链:使用现有的 BSC 功能开发定制化区块链和 DAPP 的 PoS 解决方案

BNB ZkRollup(即将到来):ZkRollup 解决方案能将 BSC 扩展为超高性能区块链

BSC Partition Chain 分区链(BPC):类似以太坊 L2,用于承载 BNB Beacon 链的一些计算

5.2 BNB

与其他公链的主要 Token 不同,BNB 不仅是 BSC 链的主要 Token ,同时也是 Binance 交易平台的平台 Token 。BNB 除了受到 BSC 链的活跃度影响,也和 Binance 交易平台的活动与业务营收息息相关。

BNB 于去年 11 月通过了 BEP-95 提案的燃烧计划,BNB 燃烧总量的提案通过,长期并不利于 GameFi 类项目的复杂智能合约交互,可能会大幅提高该类项目的使用门槛。结合 BSC 对 BAS 的建立,猜测 BSC 链未来会主要把高频智能合约交互放在侧链进行。

5.3 生态

根据 DefiLlama 的数据,BSC 链上 TVL 现约为 60 亿美金,占全链链上 TVL 的 7.8%。

资料来源:DefiLlama

生态项目中,PancakeSwap 占据了 48.86%,TVL 占比前十的项目中,几乎都是 BSC 链的原生项目,且其中 7 个项目已上市 Binance 交易平台。

资料来源:DefiLlama

由于 BSC 相对较低的开发成本,在 BSC 上有大量生态项目开发活跃,21 年 11 月一度达到 1600 万的日交易哈希数。

资料来源:defiprime.com

BSC 链上有大量活跃的 DeFi 项目(例如 Tranchess),GameFi 项目(例如 Binary X)和元宇宙项目(例如 SecondLive),唯一缺乏的是较为成熟的 NFT 交易市场。

BSC 对生态的发展设立有非常豪华的扶持,定期举办 MVB 计划评选出优秀生态项目并给予扶持,并于 2021 年 10 月推出了 10 亿美金的 BSC 生态激励。

5.4 BAS 侧链

根据 Mehta (2022) 的研究,每个 BAS 链都会有自己的 3-7 个验证人,预计会运行基于 PoS 的超级多数(2/3)共识。每个 BAS 链将使用自己的质押和实用 Token 来进行运作。此外,每个侧链的状态和状态转换将完全独立于其他侧链。

BAS 链将需要第三方桥接器来相互通信。在这种情况下,BSC 将利用 Celer 的第三方桥梁,通过「锁定 + 铸造」的形式,连接到每个 BAS,同时每个 BAS 也通过这种机制 连 接。(详 见 Shanav K Mehta,Jump Crypto: Flavors of Standalone Multichain Architecture)

目前已确定参与 BAS 的项目有 Meta Apes(BSC 链原生的对战类 GameFi),Project Galaxy(多链部署的链上身份凭证项目)和 Cube(BSC 链原生的游戏平台)。

第 6 节 Cosmos:开放架构、模块化和空投

与其在一条公链上运行一个智能合约,和其他几千个智能合约争抢 gas 资源;为什么不在 Cosmos 上自己运行一条区块链,由公共的验证人提供共识?

——Cosmos 官网

作为多链架构的创始项目,如果要只能用一个词来形容 Cosmos 的理念和生态,那么一定是:开放。

6.1 开放架构:共享安全性和链间账户

Cosmos 架构示意图

资料来源:X 咨询

在上图 Cosmos 的架构示意图中,最核心的部分是中间一层的 TenderMint 共识引擎。这种封装的共识生成模块理论上可以通过 ABCI(Application Blockchain Interface)被任何应用链调用。(注: ABCI 即图中连接 TenderMint 和上层中心 Cosmos Hub 的那根绿柱。)

上层的链分为两种:主打的「路由器」中继作用的 Hub 链和主打应用的其他 Zone 链。两种链由跨链 IBC(Inter-Blockchain Communication)协议来完成通信。而后跨链功能又更进一步,升级为链间账户,可以一站式完成不同链的操作。

理论上,这样的架构允许每一个 Zone 都可以通过 ABCI 相连到 TenderMint 上形成完全独立的链。但是,独立也就意味着自主。链的安全性如果没有足够的质押者就很容易遭到攻击。所以在官方推出了第一个 Hub,Cosmos Hub,之后很多 Zone 都选择直接连到其上共享 Cosmos Hub 链上的 ATOM 庞大质押者带来的安全性,顺便再通过 Cosmos Hub 间接与其他所有生态中的 Zone 相连。所以 Cosmos 是作为一个整体共享安全性的。

6.2 模块化的 Cosmos SDK 开发工具

封装成一个个模块的 Cosmos SDK 工具箱可谓是对区块链应用开发者最友好的开发工具了。通过对于每个常用模块的调用,开发者可以快速完成自己应用的通用部分,并着重开发特殊的模块。同时,SDK 还对近期常用的模块进行标准化封装,供后来开发者使用,避免重复开发。

资料来源:cloud.tencent.com/developer/article/1446970

6.3 空投

由于共享安全性,新加入的应用链的验证工作很大程度上是由其他链完成的。所以为了回报这种贡献,新项目一般会对 ATOM 和其他几条主要链(如 Osmosis, Juno, Secret)质押者的空投自己的 Token 。

而频繁的空投还带来另一个意想不到的结果:对于 DAO 空投机制的实验和思考,以及随之而来的治理改进。

几次重大空投包括:Osmosis(2021.7.4);Juno(2021.8.27);Evmos(2022.4.19)。

其中,Juno 的空投在之后还引发了关于 DAO 治理方式的重大争议。

小结

由开放、模块化和空投代表的 Cosmos 在很多人眼中有成为所有区块链底层 L0 的潜力,正如 Cosmos 的标签:区块链的互联网。但是这样的共识是需要一点点创建的,不知道世界给不给 Cosmos 这个时间。

第 7 节 PolkaDot:中继链与平行链、插槽拍卖、黑客松

曾经的波卡被称为「跨链之王」,只是最近已经很少有人提及了。一方面是因为波卡本身的「野心」比跨链更大,波卡希望建立的是一个能传输所有区块链上所有数据的网络;另一方面,波卡目前的发展方向更偏重于自身生态的项目建设,发展模式和其他 L1 开

始趋同。

7.1 架构:中继链和平行链

资料来源:波卡白皮书

波卡的多链生态中,所有的链分为中继链和平行链两种。在中继链的的层次上提供底层的 PoS 验证,共享计算和共识;平行链运行不同的应用,并由插槽(Slot)连接到中继链。而非平行链的其他链(比如 ETH 和 BTC)可以通过转接桥(Bridges,一种特殊的平行链,专门负责跨链)与中继链通信。

(技术细节详见波卡白皮书:polkadot.network/PolkaDotPaper.pdf)

7.2 插槽拍卖

为了使用中继链并加入波卡生态,项目方需要竞拍插槽位置(上限约为 100 个),租期两年,竞拍成功的 DOT 在此期间会被锁定。页 31

全球 Web3 生态创新观察报告(A Review of Global Web3 Eco Innovation)插槽第一轮拍卖(2021.12)共质押有 9911.32 万个 DOT(占总量 8.6%),Acala Network,Moonbeam Network,Astar Network,Parallel Finance,Clover Finance 这 5 个项目获得。第二轮 Efinity、Centrifuge、Composable Finance、HydraDX、Interlay 和 Nodle 这 6 个项目以 2700 万个 DOT(占总量 2.4%)赢得竞拍。和第一轮相比,平均花费少了 77.3%。

当然,波卡链的插槽数量是有限的(大约 100 个),所以,波卡生态还有很多和波卡链同构的先行网,像比较有名的 Kusama,也在不断地进行着插槽拍卖。

7.3 黑客松 Decoded

从 2020 年起,波卡黑客松 Decoded 每年会举办的,推广和发布项目最新动态。

小结

波卡经历了由「跨链之王」转向 L0 再转向了「类似 L1」,从某种程度上也反映了区块链公链的设计思路转变。但是和区块记录的终局性不同,链的迭代和进化可以是无止境的。

第 8 节 Solana:PoH、生态、宕机事件

在所有主流公链中,Solana 绝对算的上是独树一帜。从设计理念上看,Solana 像是「圈外」程序员们对于区块链同行的一次「反击」。特殊的异步 PoH 验证机制,Rust 的采用,完善统一的 DeFi 和 NFT 底层,还有互联网「喜闻乐见」的 DDOS 攻击,这一切都造成了 Solana 的特殊气质。

8.1 机制:Rust,POH 与「三角取舍」

Rust 在区块链中并不是主流,更多链的采用的是 EVM 的 Solidity 系统。但是在 2020 年一项针对开发人员的 Stack Overflow 调查显示,Rust 为「最受欢迎的编程语言」,大约 86% 的受访者表示他们希望在未来继续使用 Rust 进行编码。(参见 Supra Labs:《详解区块链编程语言:致雄心勃勃的开发人员》)

在 2018 年 9 月 24 日,Solana,Zcash 以及 Parity 的三方会谈中,Solana 创始人总结了 Rust 适合区块链开发的 6 点原因:(1)速度和 C/C++一样快;(2)像 Haskell 般的类型安全;(3)没有垃圾回收器,变量出了作用域会自动被回收,释放内存;(4)杜绝了空指针和悬挂指针,这二者是导致 C/C++系统崩溃,不安全代码的根源;(5)规则严谨;(6)实现并发编程。Solana 的 PoH(Proof of History)共识机制是很有创新性的异步结构。

一般来说,区块链在状态更新时会要求全网同步。也就是说,所有的节点同步更新后才会出下一个区块。而这在一定程度上降低了每个节点的效率。为了最大程度地提升每个节点的性能,Solana 引入了一个分片式时钟和一个全局时钟. 至此,状态的更新不再需要全局时间的同步,每个节点将周期性地将自己的时钟与全局时钟同步。

同时为了解决交易的信任问题,Solana 同时也引入 VDF(可验证延迟函数)。每个交易打包上链时 PoH 会记录一个时间戳,便于节点使用 VDF 验证链上操作的历史记录。高效的 Rust 语言以及满负载运行节点的 PoH 共识铸造了「极速」的 Solana。区块链的不可能三角(去中心化,扩展性,安全性)中,比特币,以太坊的主网都舍弃了可扩展性,而 Solana 舍弃了去中心化。

目前 Solana 基金会是唯一在区块链上开发核心节点的实体。根据 Solana beach 的数据显示(https://solanabeach.io/),目前 Solana 的节点数量为 1793 个,中本聪系数为 26(中本聪系数:让某一子系统妥协所需的最小实体数)。所以理论上,只需要 26 个节

点就可以使 Solana 瘫痪。

8.2 生态:Serum 和 Metaplex

根据 Solana 官网信息,截至 6.25,Solana 上 DeFi 有 301 个(其中 DEX 有 175 个,AMM 机制 25 个,Order Book 机制 150 个),而 NFT 项目有 929 个(其中 Metaplex 相关的有 100 个),Game 有 271 个。其中分为基于 Serum 的 DeFi 系统和基于 Metaplex 的 NFT 系统。

在 DeFi 项目中,有一半是 DEX,这得益于 Solana 上的 DeFi 基建 Serum。Serum 是一个 Order Book 的 DEX,所有 Solana 上的 DEX 流动性都会集聚到 Serum。

换言之,如果任何一个 DEX 上的挂单,最终撮合交易的是 Serum,而你的对手方也页 33 全球 Web3 生态创新观察报告(A Review of Global Web3 Eco Innovation)是整个 Solana 上 DEX 的所有 Maker。这保证 Solana 上流动性的集中,交易的足够深度,以及所有的 DEX 都只是 Serum 的一个 GUI。此外,Solana 与中心化交易平台 FTX 的紧密关系也让 Serum 在事实上有机会共享部分的链下流动性。

和 DeFi 项目相比,Solana 上的 NFT 要多出两倍。从 NFT 基础设施上来说,这可能是当下最适合 NFT 的公链。Solana 上的 NFT 底层协议 Metaplex,支持用户完成铸造,定价,发售的一站式流程。

在这个万物皆可 NFT 的时代,大大降低了 NFT 的创造门槛。设计好愿景,讲好故事,NFT 便可上市。所以,在以太坊 NFT 市场遇冷的时候,Solana 上的 NFT 热度不减反增。在市场低迷的 5 月,OpenSea(以太坊链)交易量环比下滑 31.6%。而 Magic Eden(Solana 链上最大的 NFT 交易平台)5 月交易量环比增长 39.79%,OpenSe(aSolana)环比增长 286.02%。

8.3 宕机事件

虽说 Solana 主推 TPS 高,交易处理速度快,但是却经常非常不稳定。以下列举了近期几次比较严重的主网事故:2022.5.1,Solana 主网涌进了 4m 每秒的请求次数,导致节点内存不够停止出块,近七个小时没有出块。2022.5.26,Solana 主网发生区块时钟偏移,链上计时与现实世界时间落后约 30 分钟。

2022.6.1,Solana 由于区块未能达成共识,主网中断约 4.5 小时。期间还穿插着数十次「主网性能下降」。(详情参见 https://status.solana.com/history,节点更新情况 Twitter:@SolanaStatus。)

究其原因是大部分新链游和 NFT 的铸造活动或者 Genesis NFT 售卖引来了大量的科学家和他们的机器人,伴随着各个机器人们每秒至少两位数的点击频率,Solana 持续遭受着 DDOS 攻击(大量无效请求导致正常请求无法被提交)。例如,5.1 的宕机事件也是由于机器人攻击了 candy machine(Metaplex 推出的 mint NFT 的工具)导致的。前端时间 StepN 的过热也导致了 Solana 的拥堵。目前 Solana 也引入了解决方案,如果一个钱包提交了无效的 NFT 交易,该钱包会被扣去 0.01 Sol 作为惩罚。

这样看,Solana 问题的主要根源来自两点:底层技术和 NFT 的火热。Solana 或许能抗住 Defi 清算带来的套利机器人,但是却输给了 NFT 机器人。

小结

如果说高速异步是 Solana 最大的标签,那么宕机也就是它付出的代价。但相比于去年,Solana 的性能在逐步提升,TPS 有所恢复并且交易失败在减少。或许正如 Solana Labs 创始人 Anatoly Yakovenko 所说的,这些只是「一次阵痛」。得益于高速,DeFi,NFT 和 Game 也许可以带来一些意想不到的结合方式。

第 9 节 中国区块链:数字藏品+联盟链

在 2021 年的监管事件之后,中国的区块链主要以数字藏品(NFT)平台为主;并且以节点数量有限并大多掌握在开发者手中的联盟链为主。经郭志浩律师统计的前 100 平台中,大厂数量并不少。

但是也有使用 ETH 发行 NFT 的 Bilibili,Bigverse(NFT 中国)等,以及使用 Solana 和 Polygon 的公司。

在去中心化上,联盟链饱受争议。Meta(原 Facebook)的 Libra 计划的失败似乎也是一个联盟链失败的例子。但是现在说 Web3 里容不下联盟链还为时尚早。

总结

区块链的历史几乎可以等同于公链的历史。在不同的公链迭代中反映的其实是不同的社区群体对于当前世界的不同理解,和应对不同问题的不同解决方案。但和世界上所有的解决方案一样,旧的方案会成为新的问题。所以对于 Web3 的未来有一点是确定的,公链在很长一段时间都会成为底层核心,并且还会不断迭代。

本站尊重版权,转载目的在于传递更多信息,若内容侵犯您的权益,请及时联系我们,本站将及时处理。

扫一扫,分享到微信

猜你喜欢

微信公众号

微信公众号